The value of the limit Limx→0 (cos x)cot2 x is
Given, Limx→0 (cos x)cot² x = Limx→0 (1 + cos x – 1)cot² x = eLimx→0 (cos x – 1) × cot² x = eLimx→0 (cos x – 1)/tan² x = e-1/2
The value of limit Limx→0 {sin (a + x) – sin (a – x)}/x is
Given, Limx→0 {sin (a + x) – sin (a – x)}/x = Limx→0 {2 × cos a × sin x}/x = 2 × cos a × Limx→0 sin x/x = 2 cos a
Limx→-1 [1 + x + x² + ……….+ x10] is
Given, Limx→-1 [1 + x + x² + ……….+ x10] = 1 + (-1) + (-1)² + ……….+ (-1)10 = 1 – 1 + 1 – ……. + 1 = 1
The value of Limx→01 (1/x) × sin-1 {2x/(1 + x²) is
Given, Limx→0 (1/x) × sin-1 {2x/(1 + x²) = Limx→0 (2× tan-1 x)/x = 2 × 1 = 2
Limx→0 log(1 – x) is equals to
We know that log(1 – x) = -x – x²/2 – x³/3 – …….. Now, Limx→0 log(1 – x) = Limx→0 {-x – x²/2 – x³/3 – ……..} ⇒ Limx→0 log(1 – x) = Limx→0 {-x} – Limx→0 {x²/2} – Limx→0 {x³/3} – …….. ⇒ Limx→0 log(1 – x) = 0